ArrayLSTM

Release 0.0.1

Thijs van Ede

Jul 29, 2022

CONTENTS:

1 Installation

1.1 Fromsource i i i i e e e e e e e

1.2 Dependencies o i e e e e e e e e e e e e e e e
2 Usage

2.1 OVEIVIEW o o o e e e e e e e e e

22 Code ... e e e e

3 Reference

3.1 LSTM. . o e e
3.2 ArrayLSTM . . L o e e e e
3.3 AttentionArrayLSTM L e
3.4 StochasticArrayLSTM e e e e e e e e e
4 Contributors
4.1 Code . . o e
4.2 Academic Contributors e e e e e e e
5 License
6 Citing
6.1 Bibtex e e
Index

17
17
17

19

21
21

23

ArrayLSTM, Release 0.0.1

ArrayLSTM provides a pytorch implementation of Recurrent Memory Array Structures by Kamil M Rocki. This code
was implemented as part of the IEEE S&P 2022 “DeepCASE: Semi-Supervised Contextual Analysis of Security
Events™_ paper. We ask people to cite both works when using the software for academic research papers, see Citing
for more information.

Recurrent Memory Array Structures by Kamil M Rocki: https://arxiv.org/abs/1607.03085

IEEE S&P 2022 DeepCASE: Semi-Supervised Contextual Analysis of Security Events paper.: https://vm-thijs.ewi.
utwente.nl/static/homepage/papers/deepcase.pdf

CONTENTS: 1

https://arxiv.org/abs/1607.03085
https://vm-thijs.ewi.utwente.nl/static/homepage/papers/deepcase.pdf
https://vm-thijs.ewi.utwente.nl/static/homepage/papers/deepcase.pdf

ArrayLSTM, Release 0.0.1

2 CONTENTS:

CHAPTER
ONE

INSTALLATION

The most straigtforward way of installing ArrayLSTM is via pip

pip install array-lstm

1.1 From source

If you wish to stay up to date with the latest development version, you can instead download the source code. In this
case, make sure that you have all the required dependencies installed.

Once the dependencies have been installed, run:

pip install -e <path/to/directory/containing/arraylstm/setup.py>

1.2 Dependencies

ArrayLSTM requires the following python packages to be installed:
e pytorch: https://pytorch.org/

All dependencies should be automatically downloaded if you install ArrayLSTM via pip. However, should you want
to install these libraries manually, you can install the dependencies using the requirements.txt file

pip install -r requirements.txt

Or you can install these libraries yourself

pip install -U torch

https://github.com/Thijsvanede/ArrayLSTM
https://pytorch.org/

ArrayLSTM, Release 0.0.1

4 Chapter 1. Installation

CHAPTER
TWO

USAGE

This section gives a high-level overview of the modules implemented by ArrayLSTM and provides way of extending
them. We also include several working examples to guide users through the code. For detailed documentation of
individual methods, we refer to the Reference guide.

2.1 Overview

This section explains the modular design of ArrayLSTM on a high level. Figure 1 provides an overview of the different
modules used in the ArrayLSTM implementation.

All LSTM variants are subclasses of the nn.Module class. Therefore, they all implement the forward(X, hidden)
method. Or alternatively, the class implements the __call__ () method, which subsequently calls the forward(X,
hidden) method. Figure 2 gives an overview of how the forward method is implemented. Note that the dashed block
update_hidden() is only called in the ArrayLSTM variants, not the regular LSTM.

2.2 Code

To use ArrayLSTM into your own project, you can use it as a standalone module. Here we show some simple examples
on how to use the ArrayLSTM package in your own python code. For a complete documentation we refer to the
Reference guide.

2.2.1 Import

To import components from ArrayLSTM simply use the following format

from arrayLSTM import <Object>
from arrayLSTM.extensions import <Object>

For example, the following code imports the different LSTM objects as found in the Reference.

Imports
from arrayLSTM import LSTM
from arrayLSTM import ArrayLSTM

from arrayLSTM.extensions import AttentionArrayLSTM
from arrayLSTM.extensions import StochasticArrayLSTM

ArrayLSTM, Release 0.0.1

nn.Module

Extends

LSTM

+ input_size: int
+ hidden_size: int
+ i2h: nn_Linear
+ h2h: nn.Linear

+ forward({Tensor, {Tensor, Tensor)): Tensor
+ forward_cell[Tensor, Tensor, Tensor): (Tensor, Tensar)
+ initHidden(Tensor): Tensor

/N

Extends

ArrayLSTM

+ koint
+ i2h: nn_Linear
+ h2h: nn._Linear

+ forward_cell{Tensor, Tensor, Tensor): (Tensor, Tensor)
+ Update_hidden{Tensor, Tensor): Tensor
+ initHidden|Tensor): Tensor

SN

Extends Extends

AttentlionArrayLSTM

+ max_poolling : boolean
+i2a: nn.Linear

StochasticArrayLSTM

+ forward_cell(Tensor, Tensor, Tensor): (Tensor, Tensor)

+ forward_cell(Tensor, Tensor, Tensor): (Tensor, Tensor)

Fig. 1: Figure 1: Overview of modules in class diagram. Note that this diagram only contains attributes and methods
that are overwritten in the respective classes.

Chapter 2. Usage

ArrayLSTM, Release 0.0.1

forward (¥, hidden)

‘ initHidden|) ‘

do

¥

hidden, state = forward_cell{x, hidden, state) done

L Compute LSTM gates

update_hidden(}

return output, (hidden, state) [

Fig. 2: Figure 2: Control flow graph of methods called for each sequence. Note that the update_hidden() method is
only called in the ArrayLSTM variants, not the regular LSTM.

2.2.2 Working example

In this example, we import all different LSTM implementations and use it to predict the next item in a sequence. First
we import the necessary torch modules and different LSTMs that we want to use.

Torch imports

import torch

import torch.nn as nn

import torch.nn.functional as F

ArrayLSTM imports

from arrayLSTM import LSTM

from arrayLSTM import ArrayLSTM

from arrayLSTM.extensions import AttentionArrayLSTM
from arrayLSTM.extensions import StochasticArrayLSTM

Second, we generate some random data

Parameters to use

n_samples = 1024
seq_length = 10
size_input = 10
size_hidden = 128
size_output = 10
k =4

(continues on next page)

2.2. Code 7

ArrayLSTM, Release 0.0.1

(continued from previous page)

Generate random input data
X = (size_input*torch.rand((n_samples, seq_length))).to(torch.int64)

Next, we create a Neural Network with our LSTM of choice. Please note that this is a very simple example in which
we show how the StochasticArrayLSTM can be used as a simple module.

class MyNetwork(nn.Module):

def __init__(self, size_input, size_hidden, size_output, k):
Call super method
super().__init__Q

Set variables
self.size_input = size_input
self.size_hidden = size_hidden
self.size_output size_output
self.k k

Initialise layers

self.lstm = StochasticArrayLSTM(size_input, size_hidden, k) # Use any LSTM of.
—your choosing
self.linear = nn.Linear(size_hidden, size_output)

self.softmax = nn.LogSoftmax(dim=1)

def forward(self, X):
One-hot encode input - transforms input into one-hot-encoded input
encoded = F.one_hot(X, self.size_input).to(torch.float32)

Pass through LSTM layer

out, (hidden, state) = self.lstm(encoded)
Take hidden state as output

hidden = hidden.squeeze(0)

Pass through linear layer
out = self.linear(hidden)
Perform softmax and return
return self.softmax(out)

Finally, we can call the network using the data and perform further training, which we leave up to the user.

Create an instance of MyNetwork

net = MyNetwork(size_input, size_hidden, size_output, k)
Pass the input data X through the network

output = net(X)

8 Chapter 2. Usage

CHAPTER
THREE

REFERENCE

This is the reference documentation for the classes and methods objects provided by the ArrayLSTM module.

3.1 LSTM

As a basis, we provide a pure pytorch implementation of the LSTM module. This extends the regular torch.nn.Module
interface.

class 1stm.LSTM(*args: Any, **kwargs: Any)
LSTM implementation in pytorch

Note: This is a batch_first=True implementation, hence the forward() method expect inputs of shape=(batch,
seq_len, input_size).

input_size
Size of input dimension
Type
int
hidden_size
Size of hidden dimension
Type
int
i2h
Linear layer transforming input to hidden state

Type

nn.Linear
h2h
Linear layer updating hidden state to hidden state

Type
nn.Linear

https://pytorch.org/docs/stable/nn.html#module

ArrayLSTM, Release 0.0.1

3.1.1 Initialization

LSTM.__init__ (input_size, hidden_size)
LSTM implementation in pytorch

Note: This is a batch_first=True implementation, hence the forward() method expect inputs of shape=(batch,
seq_len, input_size).

Parameters
* input_size (int) — Size of input dimension

e hidden_size (int) — Size of hidden dimension

3.1.2 Forward

As all nn.Module objects, the LSTM implements a forward() method. This method forwards all sequences in x
through the forward_cell () method.

LSTM. forward (x, hidden=None)
Forward all sequences through the network.

Parameters

* X (torch.Tensor of shape=(batch, seq_len, input_size)) — Tensor to pass
through network

* hidden (tuple)-Tuple consisting of (hidden, state) to use as initial vector. If None is given,
both hidden and state vectors will be initialised as the O vector.

hidden torch.Tensor of shape (batch, input_size), default=0 vector
Tensor containing the hidden state

state torch.Tensor of shape (batch, input_size), default=0 vector
Tensor containing the cell state

Returns

* outputs (forch.Tensor of shape=(batch, seq_len, hidden_size)) — Outputs for each input of
sequence

* hidden (ruple) — Tuple consisting of (hidden, state) of final output.

hidden torch.Tensor of shape (batch, output)
Tensor containing the hidden state

state torch.Tensor of shape (batch, output)
Tensor containing the cell state

A single LSTM cell is implemented by the forward_cell() method. Note that this method is also overwritten by
subclasses to implement their custom forward methods.

LSTM. forward_cell (x, hidden, state)

Perform a single forward pass through the network.
Parameters

* X (torch.Tensor of shape=(batch, input_size))— Tensor to pass through network

10 Chapter 3. Reference

ArrayLSTM, Release 0.0.1

* hidden (torch.Tensor of shape (batch, input_size)) — Tensor containing the
hidden state

* state (torch.Tensor of shape (batch, input_size))- Tensor containing the cell
state

Returns
* hidden (torch.Tensor of shape (batch, input_size)) — Tensor containing the next hidden state

* state (torch.Tensor of shape (batch, input_size)) — Tensor containing the next cell state

3.1.3 Hidden state

The LSTM provides a method for initializing the hidden state and cell state. Note that this method is also overwritten
by subclasses to implement their custom cell initializations.

LSTM.initHidden(x)
Initialise hidden layer

3.2 ArrayLSTM

The ArrayLSTM implements the basic ArrayLSTM of Rocki’s Recurrent Memory Array Structures. It module is build
as an extension of the normal LSTM implementation.

class arraylstm.ArrayLSTM(*args: Any, **kwargs: Any)
Implementation of ArrayLSTM

From Recurrent Memory Array Structures by Kamil Rocki

Note: This is a batch_first=True implementation, hence the forward() method expect inputs of shape=(batch,
seq_len, input_size).

input_size
Size of input dimension

Type
int
hidden_size
Size of hidden dimension

Type

int

Number of parallel memory structures, i.e. cell states to use

Type
int
i2h
Linear layer transforming input to hidden state

Type

nn.Linear

3.2. ArrayLSTM 11

https://arxiv.org/abs/1607.03085

ArrayLSTM, Release 0.0.1

h2h
Linear layer updating hidden state to hidden state

Type

nn.Linear

3.2.1 Initialization

ArrayLSTM.__init__ (input_size, hidden_size, k)
Implementation of ArrayLSTM

Note: This is a batch_first=True implementation, hence the forward() method expect inputs of shape=(batch,
seq_len, input_size).

Parameters
e input_size (int) — Size of input dimension
e hidden_size (int) — Size of hidden dimension

* k (int) — Number of parallel memory structures, i.e. cell states to use

3.2.2 Forward

A single ArrayLSTM cell is implemented by the forward_cell () method. This method overwrites its LSTM super-
class.

ArrayLSTM. forward_cell (x, hidden, state)

Perform a single forward pass through the network.
Parameters
* X (torch.Tensor of shape=(batch, input_size))— Tensor to pass through network

e hidden (torch.Tensor of shape (batch, input_size)) — Tensor containing the
hidden state

* state (torch.Tensor of shape (batch, input_size)) - Tensor containing the cell
state

Returns
* hidden (torch.Tensor of shape (batch, input_size)) — Tensor containing the next hidden state
* state (torch.Tensor of shape (batch, input_size)) — Tensor containing the next cell state

As variations of the ArrayLSTM update their hidden state differently, we also add a method forward_cell (). This
method can be overwritten by subclasses to update the hidden state in different ways.

ArrayLSTM.update_hidden (outputs, states)
Default hidden state as sum of outputs and cells

Parameters

e outputs (torch.Tensor of shape=(k, batch_size, hidden_size))—Tensor con-
taining the result of output gates o

12 Chapter 3. Reference

ArrayLSTM, Release 0.0.1

e states (torch.Tensor of shape=(k, batch_size, hidden_size)) — Tensor con-
taining the cell states

Returns
hidden — Hidden tensor as computed from outputs and states

Return type
torch.Tensor of shape=(1, batch_size, hidden_size)

3.2.3 Hidden state

The ArrayLSTM requires multiple cell states instead of a single one, therefore it overwrites it super method from LSTM.

ArrayLSTM.initHidden(x)

Initialise hidden layer

3.3 AttentionArrayLSTM

The AttentionArrayLSTM implements an ArrayLSTM with Deterministic Array-LSTM extension “Lane selection:
Soft Attention” of Rocki’s Recurrent Memory Array Structures. It module is build as an extension of the basic ArrayL-
STM implementation.

class extensions.AttentionArrayLSTM(*args: Any, **kwargs: Any)
Implementation of ArrayLSTM with Lane selection: Soft attention

From Recurrent Memory Array Structures by Kamil Rocki

Note: This is a batch_first=True implementation, hence the forward() method expect inputs of shape=(batch,
seq_len, input_size).

input_size

Size of input dimension

Type
int
hidden_size
Size of hidden dimension

Type

int

Number of parallel memory structures, i.e. cell states to use

Type
int
max_pooling
If True, uses max pooling for attention instead

Type

boolean, default=False

3.3. AttentionArrayLSTM 13

https://arxiv.org/abs/1607.03085

ArrayLSTM, Release 0.0.1

i2h
Linear layer transforming input to hidden state

Type

nn.Linear

h2h
Linear layer updating hidden state to hidden state

Type
nn.Linear

3.3.1 Initialization

AttentionArrayLSTM.__init__(input_size, hidden_size, k, max_pooling=False)
Implementation of ArrayLSTM with Lane selection: Soft attention

Note: This is a batch_first=True implementation, hence the forward() method expect inputs of shape=(batch,
seq_len, input_size).

Parameters
* input_size (int) — Size of input dimension
e hidden_size (int) — Size of hidden dimension
* k (int) — Number of parallel memory structures, i.e. cell states to use

* max_pooling (boolean, default=False) — If True, uses max pooling for attention in-
stead

3.3.2 Forward

The AttentionArrayLSTM overwrites ArrayLSTM’s forward_cell() method to include an attention mechanism.
The API is equivalent to that of ArrayLSTM, but the implementations differ.

AttentionArrayLSTM. forward_cell (x, hidden, state)
Perform a single forward pass through the network.
Parameters
* X (torch.Tensor of shape=(batch, input_size))— Tensor to pass through network

e hidden (torch.Tensor of shape (batch, input_size)) — Tensor containing the
hidden state

* state (torch.Tensor of shape (batch, input_size)) - Tensor containing the cell
state

Returns
* hidden (torch.Tensor of shape (batch, input_size)) — Tensor containing the next hidden state

* state (torch.Tensor of shape (batch, input_size)) — Tensor containing the next cell state

14 Chapter 3. Reference

ArrayLSTM, Release 0.0.1

3.4 StochasticArrayLSTM

The StochasticArrayLSTM implements an ArrayLSTM with Non-deterministic Array-LSTM extension “Stochastic
Output Pooling” of Rocki’s Recurrent Memory Array Structures. It module is build as an extension of the basic Ar-
rayLSTM implementation.

class extensions.StochasticArrayLSTM(*args: Any, **kwargs: Any)
Implementation of ArrayLSTM with Stochastic Output Pooling

From Recurrent Memory Array Structures by Kamil Rocki

Note: This is a batch_first=True implementation, hence the forward() method expect inputs of shape=(batch,
seq_len, input_size).

input_size
Size of input dimension

Type
int

hidden_size

Size of hidden dimension

Type

int

Number of parallel memory structures, i.e. cell states to use

Type
int
i2h
Linear layer transforming input to hidden state

Type

nn.Linear

h2h
Linear layer updating hidden state to hidden state

Type

nn.Linear

3.4.1 Initialization

StochasticArrayLSTM.__init__(*args: Any, **kwargs: Any) — None

3.4. StochasticArrayLSTM 15

https://arxiv.org/abs/1607.03085

ArrayLSTM, Release 0.0.1

3.4.2 Forward

The StochasticArrayLSTM overwrites ArrayLSTM’s update_hidden() method to update the hidden state using
stochastic output pooling. The API is equivalent to that of ArrayLSTM, but the implementations differ.

StochasticArrayLSTM.update_hidden (outputs, states)
Update hidden state based on most likely output

Parameters

e outputs (torch.Tensor of shape=(k, batch_size, hidden_size))—Tensor con-
taining the result of output gates o

» states (torch.Tensor of shape=(k, batch_size, hidden_size)) — Tensor con-
taining the cell states

Returns
hidden — Hidden tensor as computed from outputs and states

Return type
torch.Tensor of shape=(1, batch_size, hidden_size)

16 Chapter 3. Reference

CHAPTER
FOUR

CONTRIBUTORS

This page lists all the contributors to this project. If you want to be involved in maintaining code or adding new features,
please email t(dot)s(dot)vanede(at)utwente(dot)nl.

4.1 Code

* Thijs van Ede

4.2 Academic Contributors

* Thijs van Ede

* Hojjat Aghakhani

¢ Noah Spahn

* Riccardo Bortolameotti
* Marco Cova

* Andrea Continella

* Maarten van Steen

* Andreas Peter

* Christopher Kruegel

* Giovanni Vigna

17

ArrayLSTM, Release 0.0.1

18 Chapter 4. Contributors

CHAPTER
FIVE

LICENSE

MIT License
Copyright (c) 2020 Thijs van Ede

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

19

ArrayLSTM, Release 0.0.1

20 Chapter 5. License

CHAPTER
SIX

CITING

To cite ArrayLSTM please use the following publications:

van Ede, T., Aghakhani, H., Spahn, N., Bortolameotti, R., Cova, M., Continella, A., van Steen, M., Peter, A., Kruegel, C.
& Vigna, G. (2022, May). DeepCASE: Semi-Supervised Contextual Analysis of Security Events. In 2022 Proceedings
of the IEEE Symposium on Security and Privacy (S&P). IEEE. [PDF DeepCASE]

Rocki, K.M. (2016). Recurrent memory array structures. In arXiv preprint arXiv:1607.03085. [PDF ArrayLSTM]

6.1 Bibtex

6.1.1 DeepCASE

@inproceedings{vanede2020deepcase,
title={{DeepCASE: Semi-Supervised Contextual Analysis of Security Events}},
author={van Ede, Thijs and Aghakhani, Hojjat and Spahn, Noah and Bortolameotti,.
—Riccardo and Cova, Marco and Continella, Andrea and van Steen, Maarten and Peter,.
—.Andreas and Kruegel, Christopher and Vigna, Giovanni},
booktitle={Proceedings of the IEEE Symposium on Security and Privacy (S&P)},
year={2022},
organization={IEEE}

}

6.1.2 ArrayLSTM

@article{rocki2®l6recurrent,
title={Recurrent memory array structures},
author={Rocki, Kamil},
journal={arXiv preprint arXiv:1607.03085},
year={2016}

21

https://vm-thijs.ewi.utwente.nl/static/homepage/papers/deepcase.pdf
https://arxiv.org/abs/1607.03085

ArrayLSTM, Release 0.0.1

22 Chapter 6. Citing

Symbols

__init__Q (arraylstm.ArrayLSTM method), 12
__init__Q (extensions.AttentionArrayLSTM method),

14

__init__Q (extensions.StochasticArrayLSTM method),
15

__init__Q (stm.LSTM method), 10

A

ArrayLSTM (class in arraylstm), 11
AttentionArrayLSTM (class in extensions), 13

F

forward() (Istm.LSTM method), 10

forward_cell Q) (arraylstm.ArrayLSTM method), 12

forward_cell() (extensions.AttentionArrayLSTM
method), 14

forward_cell () (Istm.LSTM method), 10

H

h2h (arraylstm.ArrayLSTM attribute), 11

h2h (extensions.AttentionArrayLSTM attribute), 14
h2h (extensions.StochasticArrayLSTM attribute), 15
h2h (Istm.LSTM attribute), 9

hidden_size (arraylstm.ArrayLSTM attribute), 11

hidden_size (extensions.AttentionArrayLSTM at-
tribute), 13
hidden_size (extensions.StochasticArrayLSTM at-

tribute), 15
hidden_size (Istm.LSTM attribute), 9

i2h (arraylstm.ArrayLSTM attribute), 11

i2h (extensions.AttentionArrayLSTM attribute), 13

i2h (extensions.StochasticArrayLSTM attribute), 15

i2h (Istm.LSTM attribute), 9

initHidden() (arraylstm.ArrayLSTM method), 13

initHidden() (Istm.LSTM method), 11

input_size (arraylstm.ArrayLSTM attribute), 11

input_size (extensions.AttentionArrayLSTM attribute),
13

INDEX

input_size (extensions.StochasticArrayLSTM at-

tribute), 15
input_size (Istm.LSTM attribute), 9

K

k (arraylstm.ArrayLSTM attribute), 11
k (extensions.AttentionArrayLSTM attribute), 13
k (extensions.StochasticArrayLSTM attribute), 15

L

LSTM (class in Istm), 9

M

max_pooling (extensions.AttentionArrayLSTM
tribute), 13

at-

S

StochasticArrayLSTM (class in extensions), 15

U

update_hidden() (arraylstm.ArrayLSTM method), 12
update_hidden() (extensions.StochasticArrayLSTM
method), 16

23

	Installation
	From source
	Dependencies

	Usage
	Overview
	Code
	Import
	Working example

	Reference
	LSTM
	Initialization
	Forward
	Hidden state

	ArrayLSTM
	Initialization
	Forward
	Hidden state

	AttentionArrayLSTM
	Initialization
	Forward

	StochasticArrayLSTM
	Initialization
	Forward

	Contributors
	Code
	Academic Contributors

	License
	Citing
	Bibtex
	DeepCASE
	ArrayLSTM

	Index

